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Exposome - the definition

A potential measure of the effects of life course
exposures on health. It comprises the totality of
exposures to which an individual is subjected from
conception to death, including those resulting from
environmental agents, socioeconomic conditions,
lifestyle, diet, and endogenous processes.

*Characterization of the exposome could permit
addressing possible associations with health
outcomes and their significance, if any, alone or in
combination with genomic factors.

Cited from the Dictionary of Epidemiology
MS Porta, 6thedition, OUP 2014
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The exposome

General external

Social capital, education,
financial status, psychological
and mental stress, urban—rural
environment, climate, etc

Internal

Metabolism, endogenous
hormones, body
morphology, physical
activity, gut microflora,
inflammation, lipid
peroxidation, oxidative
stress, ageing etc

: pecitic eXterna
Radiation, infectious
agents, chemical
ontaminants and
environmental pollutants,
diet, lifestyle factors (e.g.
tobacco, alcohaol),
occupation, medical
interventions, etc

Figure 1 Three different domains of the exposome are

presented diagrammatically with non-exhaustive examples
for each of these domains

(C Wild, 2016)



Exposome

General Specific
External Exposome External Exposome
Climate, Air pollution, Societal Diet, Water, Physical Activity,

changes, Chemicals...
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s «Pathway perturbation» - US National Academy of Sciences «Risk
Assessment in the 21st century», 2017

R

% exposome research shows that the investigation of omics and molecular pathways (e.g.
metabolomics, methylome, proteomics) can identify early signs of damage from
environmental agents

Bisphenol A Phthalates Organotins Dloxms PFCs
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Adipogenesis Body weight Insulin levels

Cristina Casals-Casas and Béatrice Desvergne Annual Review of Physiology 2011.
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EXPOsOMICS is a European Union funded project that aims to
develop a novel approach to the assessment of exposure to high
priority environmental pollutants, by characterizing the external

and the internal components of the exposome.

It focuses on air and water contaminants during critical periods
of life. The project centres on 1) advanced exposure assessment
at the personal and population levels within existing European
short and long-term population studies; and 2) multiple “omic”
technologies for the analysis of biological samples.



Oxford Street: ‘active’ exposure / Hyde Park: ‘control’ exposure




Study

PEM Basel
PEM Norwich

PEM Turin
PEM Utrecht
ENVIRONAGE
Piccoli+

Rhea

INMA

EPIC Turin
EPIC Varese
MCC

Asthma SAPALDIA
Asthma ECHRS
TAPAS

Oxford Street
PISCINA

TOTAL

Transcriptomics

Epigenetics

Proteomics

90 Raw/ Proc.
42 Raw/ Proc.

85 Raw/ Proc.
87 Raw/ Proc.
198 Raw/ Proc.
97 Raw/ Proc.
100 Raw/ Proc.
97 Raw/ Proc.
187 Raw/ Proc.
192 Raw/ Proc.
405 Raw/ Proc.
402 Raw/ Proc.
80 Raw/ Proc.
N/A

N/A

120 Raw/ Proc.

89 Raw 128 Raw/ Proc.
56 Raw 60 Raw/ Proc.
76 Raw 127 Raw/ Proc.
63 Raw 90 Raw/ Proc.
193 Raw 200 Raw/ Proc.
N/A 99 Raw/ Proc.
N/A 100 Raw/ Proc.
N/A 600 Raw/ Proc.
N/A 172 Raw/ Proc.
N/A 143 Raw/ Proc.
N/A 406 Raw/ Proc.
N/A 604 Raw/ Proc.
298 Raw 80 Raw/ Proc.
117 Raw N/A
316 Raw/ Proc. N/A
86 Raw/ Proc. N/A
1,294 (Raw) 2,809
402 Proc. (mRNA) (Raw & Proc.

208 (Raw miRNA)

samples)

2,182
(Raw & Proc.
samples)

Metabolomics

127 Raw/ Proc.
61 Raw/ Proc.

127 Raw/ Proc.
89 Raw/ Proc.

204 Raw/ Proc.
100 Raw/ Proc.
100 Raw/ Proc.

100 Raw/ Proc.

382 Raw/ Proc.

591 Raw/ Proc.
405 Raw/ Proc.
80 Raw/ Proc.

120 Raw/ Proc.
360 Raw/ Proc.
120 Raw/ Proc.

2,966
(Raw & Proc.
samples)

Adductomics

798 Raw

566 Raw

146 Raw
404 Raw
134 Raw

1,914
(Raw files)



SAPALDIA
MWASen MWAS on
adult-onset - :
. air pollution
asthma

v v

Mummichog’s
pathway
enrichment tests

Mummichog’s
pathway
enrichment tests

Pathways
enriched for
adult-onset
asthma

Pathways
enriched for
air pollution

Validation™"

/

Search for MITM pathways

‘

Linoleate metabolism for PM2.5 and UFP
Glycerophospholipid metabolism for UFP

|

Laboratory confirmation of
chemical identities within
the MITM pathways

}

Linoleate (m/z=281.2464; RT=7.283)
was confirmed

Metabolomics in asthma and CVD: meet-in-the -middle (Jeong et al, submitted)

EPIC

MWAS on MWAS on
CcvD* air pollution

v v

Mummichog’s
pathway
enrichment tests

Mummichog’s
pathway
enrichment tests

Pathways
enriched for
air pollution

Pathways
enriched for CVD

> Validation™

/

Search for MITM pathways

}

Fatty acid activation for PM2.5
Linoleate metabolism for PM2.5
Glycosphingolipid metabolism for UFP
Carnitine shuttle for NO2

|

Laboratory confirmation of
chemical identities within
the MITM pathways

}

Carnitine (m/z=162.1128; RT=0.601)
and Stearoylcarnitine (m/z=428.373;
RT=6.479) were confirmed



Effects of components in a mixture

Metabolomic signatures of different components of air pollution
(Oxford Street study, left, and TAPAS, right) (Bonferroni
significance)(van Veldhoven, submitted)

PM10 PM25 PMcoarse NOx

NOZ- pvios




miRNA work in relation to air pollution shows that air pollutants
impact several pathways via miRNA activation that in turn are
relevant to the multi-organ toxicity of air pollution

Pollutant-specific cmiRNAs associated with TRAP exposure. The figure shows
the overlap as well as the specificity of the pollutant-specific cmiRNAs
associated with exposure to NO2, UFP, PM2.5, BC and PM10 of the included
subjects in Hyde Park and Oxford Street. Julian Krauskopf et al, 2018
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X-variate 2

Water quality in a swimming pool: metabolites from metabolomics show
overlap, unlike for air pollutants (Van Veldhoven et al, 2017)

post post

post

post

pre pre

pre pre
pre ppre pre

e pre
pr
pre pre pr %
pre pre pré’F Fg
pre Pre pre pre
pre pre pre
pre Pre
P ore ore
%FH Ppe pre

Pre  pre

post
pre

-20 ] 20 40
X-variate 1

CI3CH

BDCM

Legend

post
pre

Br3aCH

DBCM



Fingerprints of exposures: certain exposures may

leave characteristic fingerprints in DNA 0 e e w7 D TS
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Tobacco smoking increases the risk of at least 17 classes of human cancer. We analyzed
somatic mutations and DNA methylation in 5243 cancers of types for which tobacco
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smoking confers an elevated risk. Smoking is associated with increased mutation burdens SLLA SR A
of multiple distinct mutational signatures, which contribute to different extents in different
cancers. One of these signatures, mainly found in cancers derived from tissues directly
exposed to tobacco smoke, is attributable to misreplication of DMA damage caused by
tobacco carcinogens. Others likely reflect indirect activation of DNA editing by APOBEC
cytidine deaminases and of an endogenous clocklike mutational process. Smoking is

associated with limited differences in methylation. The results are consistent with
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the proposition that smoking increases cancer risk by increasing the somatic mutation
load, although direct evidence for this mechanism is lacking in some smoking-related 10%
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Tobacco smoke as a mixture that leaves different signatures depending on the
cancer site and possibly on the chemicals involved — e.g. PAH for lung cancer:
signature 4

Science, 4 November 2016



Integrating socio-economic status and omics
Goals of H2020 Lifepath

To improve the understanding of the mechanisms through which healthy
ageing pathways diverge by SES, by investigating life-course biological
pathways using omic technologies.

Numbers involved in Lifepath

Subjects included in mortality analysis (adults)(Stringhini et al Lancet
2017)=1.7 million

Functional outcomes (paper in preparation)=108,261

Already available methylome (EPIC, MCCS, TILDA)>5,000
New measurements (Airwave, G21, TILDA, Whitehall 1) >3,000

Already available inflammatory markers>5,000, new measurements 1,000

Metabolomics in 35,000 subjects (UCLEB consortium)



Epigenetics: biological clocks in
Lifepath

Horvath developed the DNA methylation clock to predict age
with high accuracy using 353 CpG sites

From this Age Acceleration may be derived as a discrepancy
between methylation age and chronological age

Further clock developed, e.g. by Levine: see below analysis on
2,000 subjects in Lifepath



LevinelEAA: Model 2

betas (95% CI) P 12

Education (ref: High)

Medium — 0.23 (-0.17 ; 0.64) 0.26 31.95 %

Low —— 0.53 (0.16 ; 0.9) 0.005 32.04 %
Smoking (ref: Never)

Former —— 0.59 (0.36 ; 0.81) 3e-07 0 %

Current —— 1.37 (1.03;1.7) 8e-16 14.37 %
BMI (ref: < 25)

[25,30) —. 0.47 (0.18 ; 0.75) 0.001 50.9 %

> 30 —— 1.2 (0.85; 1.54) 8e-12 48.62 %
Alcohol (ref: Never)

Occasional —— 0.22 (-0.04 ; 0.48) 0.09 0 %

Habitual —— 1.1 (0.71;1.48) 2e-08 0 %
Physical activity (ref: High)

Medium — " 0.08 (-0.24 ; 0.4) 0.62 65.87 %

Low L 0.32 (-0.18 ; 0.82) 0.21 78.42 %

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 17 1.9
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